研究成果

Nov, 2023
Chun-Hua Hsu
PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we...
Nov, 2023
Chia-Lang Hsu
The immune checkpoint inhibitor (ICI), anti-programmed death-1 (anti-PD-1), has shown moderate efficacy in some patients with head and neck squamous cell carcinoma (HNSCC). Because of this, it is imperative to establish a mouse tumor model to explore mechanisms of antitumor immunity and to develop novel therapeutic options. Here, we examined the 4-nitroquinoline-1-oxide (4NQO)-induced oral squamous cell carcinoma (OSCC) model for genetic aberrations, transcriptomic profiles, and immune cell composition at different pathologic stages. Genomic exome analysis in OSCC-bearing mice showed conservation of critical mutations found in human HNSCC. Transcriptomic data revealed that a key signature comprised of immune-related genes was increased beginning at the moderate dysplasia stages. We first...
Oct, 2023
Hsueh-Fen Juan and Chun-Hua Hsu
Neuroblastoma, a childhood cancer affecting the sympathetic nervous system, continues to challenge the development of potent treatments due to the limited availability of druggable targets for this aggressive illness. Recent investigations have uncovered that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme for de novo serine synthesis, serves as a non-oncogene dependency in high-risk neuroblastoma. In this study, we show that homoharringtonine (HHT) acts as a PHGDH inhibitor, inducing intricate alterations in cellular metabolism, and thus providing an efficient treatment for neuroblastoma. We have experimentally verified the reliance of neuroblastoma on PHGDH and employed molecular docking, thermodynamic evaluations, and X-ray crystallography techniques to determine the bond...
Sep, 2023
Chun-Hua Hsu
Antrodia cinnamomea is an endemic species found in Taiwan, known for its medicinal properties in treating various discomforts, including inflammation, diarrhea, abdominal pain, and other diseases. A. cinnamomea contains terpenoids that exhibit numerous bioactivities, making them potential food additives. This discovery piqued our interest in uncovering their biosynthetic pathway. Herein, we conducted functional and structural characterization of a sesquiterpene synthase Cop4 from A. cinnamomea (AcCop4). Through gas chromatography-mass spectrometry analysis, we observed that AcCop4 catalyzes the cyclization of farnesyl pyrophosphate (FPP), primarily producing cubebol. Cubebol is widely used as a long-lasting cooling and refreshing agent in the food industry. The structure of AcCop4,...
Jun, 2023
Hsueh-Fen Juan
Ectopic ATP synthase on the plasma membrane (eATP synthase) has been found in various cancer types and is a potential target for cancer therapy. However, whether it provides a functional role in tumor progression remains unclear. Here, quantitative proteomics reveals that cancer cells under starvation stress express higher eATP synthase and enhance the production of extracellular vesicles (EVs), which are vital regulators within the tumor microenvironment. Further results show that eATP synthase generates extracellular ATP to stimulate EV secretion by enhancing P2X7 receptor-triggered Ca2+ influx. Surprisingly, eATP synthase is also located on the surface of tumor-secreted EVs. The EVs-surface eATP synthase increases the uptake of tumor-secreted EVs in Jurkat T-cells via association with...
Apr, 2023
Hsueh-Fen Juan and Chia-Lang Hsu
Ectopic ATP synthase complex (eATP synthase), located on cancer cell surface, has been reported to possess catalytic activity that facilitates the generation of ATP in the extracellular environment to establish a suitable microenvironment and to be a potential target for cancer therapy. However, the mechanism of intracellular ATP synthase complex transport remains unclear. Using a combination of spatial proteomics, interaction proteomics, and transcriptomics analyses, we find ATP synthase complex is first assembled in the mitochondria and subsequently delivered to the cell surface along the microtubule via the interplay of dynamin-related protein 1 (DRP1) and kinesin family member 5B (KIF5B). We further demonstrate that the mitochondrial membrane fuses to the plasma membrane in turn to...
Feb, 2023
Hsueh-Fen Juan
The study of multiple “omes,” such as the genome, transcriptome, proteome, and metabolome has become widespread in biomedical research. High-throughput techniques enable the rapid generation of high-dimensional multiomics data. This multiomics approach provides a more complete perspective to study biological systems compared with traditional methods. However, the quantitative analysis and integration of distinct types of high-dimensional omics data remain a challenge. Here, we provide an up-to-date and comprehensive review of the methods used for omics data quantification and integration. We first review the quantitative analysis of not only bulk but also single-cell transcriptomics data, as well as proteomics data. Current methods for reducing batch effects and integrating heterogeneous...
Jan, 2023
Chia-Lang Hsu
Background: Metaplastic breast carcinoma (MpBC) typically consists of carcinoma of no special type (NST) with various metaplastic components. Although previous transcriptomic and proteomic studies have reported subtype-related heterogeneity, the intracase transcriptomic alterations between metaplastic components and paired NST components, which are critical for understanding the pathogenesis underlying the metaplastic processes, remain unclear. Methods: Fifty-nine NST components and paired metaplastic components (spindle carcinomatous [SPS], matrix-producing, rhabdoid [RHA], and squamous carcinomatous [SQC] components) were microdissected from specimens obtained from 27 patients with MpBC for gene expression profiling using the NanoString Breast Cancer 360 Panel on a NanoString nCounter...
Jan, 2023
Hsueh-Fen Juan
The study of multiple “omes,” such as the genome, transcriptome, proteome, and metabolome has become widespread in biomedical research. High-throughput techniques enable the rapid generation of high-dimensional multiomics data. This multiomics approach provides a more complete perspective to study biological systems compared with traditional methods. However, the quantitative analysis and integration of distinct types of high-dimensional omics data remain a challenge. Here, we provide an up-to-date and comprehensive review of the methods used for omics data quantification and integration. We first review the quantitative analysis of not only bulk but also single-cell transcriptomics data, as well as proteomics data. Current methods for reducing batch effects and integrating heterogeneous...
Jan, 2023
Ying-Chung Jimmy Lin
Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell...

頁面