研究成果

Jan, 2022
Chien-Yu Chen
To facilitate the process of tailor-making a deep neural network for exploring the dynamics of genomic DNA, we have developed a hands-on package called ezGeno. ezGeno automates the search process of various parameters and network structures and can be applied to any kind of 1D genomic data. Combinations of multiple abovementioned 1D features are also applicable. For the task of predicting TF binding using genomic sequences as the input, ezGeno can consistently return the best performing set of parameters and network structure, as well as highlight the important segments within the original sequences. For the task of predicting tissue-specific enhancer activity using both sequence and DNase feature data as the input, ezGeno also regularly outperforms the hand-designed models. Furthermore,...
Jan, 2022
Pei-Lung Chen
A heterozygous three-nucleotide (GAG) in-frame deletion in the TOR1A gene causes the rare disease, dystonia (DYT1), which typically presents as focal limb dystonia during adolescence, then spreads to other limbs. This study investigated the frequency and clinical features of DYT1 in a Taiwanese dystonia cohort. We performed targeted next generation sequencing in 318 patients with primary dystonia. We identified one DYT1 family with various types of dystonia, and we described the clinical presentations observed in this family during a 30-year follow-up. We compared the clinical characteristics to those reported in previous studies on DYT1 from 2000 to 2020. Among 318 patients, we identified only one DYT1 patient (0.3%) with an autosomal dominant family history of dystonia. The proband was...
Nov, 2021
Hsueh-Fen Juan
Strengthening the gut epithelial barrier is a potential strategy for management of gut microbiota-associated illnesses. Here, we demonstrate that dual-specificity phosphatase 6 (Dusp6) knockout enhances baseline colon barrier integrity and ameliorates dextran sulfate sodium (DSS)-induced colonic injury. DUSP6 mutation in Caco-2 cells enhances the epithelial feature and increases mitochondrial oxygen consumption, accompanied by altered glucose metabolism and decreased glycolysis. We find that Dusp6-knockout mice are more resistant to DSS-induced dysbiosis, and the cohousing and fecal microbiota transplantation experiments show that the gut/fecal microbiota derived from Dusp6-knockout mice also confers protection against colitis. Further culturomics and mono-colonialization experiments show...
Oct, 2021
Hsueh-Fen Juan and Chien-Yu Chen
The selection of peptides presented by MHC molecules is crucial for antigen discovery. Previously, several predictors have shown impressive performance on binding affinity. However, the decisive MHC residues and their relation to the selection of binding peptides are still unrevealed. Here, we connected HLA alleles with binding motifs via our deep learning-based framework, MHCfovea. MHCfovea expanded the knowledge of MHC-I-binding motifs from 150 to 13,008 alleles. After clustering N-terminal and C-terminal sub-motifs on both observed and unobserved alleles, MHCfovea calculated the hyper-motifs and the corresponding allele signatures on the important positions to disclose the relation between binding motifs and MHC-I sequences. MHCfovea delivered 32 pairs of hyper-motifs and allele...
Oct, 2021
Chun-Hua Hsu
Microbial urate oxidase has emerged as a potential source of therapeutic properties for hyperuricemia in arthritic gout and renal disease. The thermostability and long-term thermal tolerance of the enzyme need to be established to prolong its therapeutic effects. Here, we present the biochemical and structural aspects of a hyperthermostable urate oxidase (TbUox) from the thermophilic microorganism Thermobispora bispora. Enzymatic characterization of TbUox revealed that it was active over a wide range of temperatures, from 30 to 70 °C, with optimal activity at 65 °C and pH 8.0, which suggests its applicability under physiological conditions. Moreover, TbUox exhibits high thermostability from 10 to 65 °C, with Tm of 70.3 °C and near-neutral pH stability from pH 7.0 to 8.0 and high thermal...
Aug, 2021
Chun-Hua Hsu
O-Acetyl-ADP-ribose (OAADPR) is a signaling molecule identified from the conserved sirtuin reaction in Saccharomyces cerevisiae, involved in the important cellular functions of gene silencing, redox regulation, and aging. Here, we performed biochemical and structural characterization of the yeast Poa1p macro domain in detail, uncovering an unusual deacetylase activity favoring 3″- and 1″-isomers of O-acetyl-ADP-ribose. The unique active-site residues of Poa1p contributing to the distinct substrate specificity thus shed light on the divergent branch of a POA1-like subclass. Moreover, disruption of Poa1p expression in yeast showed a striking sensitivity to transcriptional stress, which implies a physiological role in response to nucleotide depletion. These findings provide biochemical and...
Jul, 2021
Hsueh-Fen Juan
LncTx is a network-based method to repurpose drugs that potentially act on lncRNAs in lung cancer. By calculating the proximity between the drug targets and the lncRNA-correlated proteins in the protein-protein interaction (PPI) network, LncTx accurately differentiates anticancer drugs from non-anticancer drugs. Furthermore, the drugs with smaller proximity (proximal drugs) are more effective than the distal drugs. This novel method provides a framework to repurpose old drugs acting on lncRNAs in lung cancer.
May, 2021
Chia-Lang Hsu
Reversal of CD8 T-cell exhaustion was considered a major antitumor mechanism of anti-programmed cell death-1 (PD-1)/ anti-programmed death ligand-1 (PD-L1)-based immune checkpoint inhibitor (ICI) therapy. The aim of this study was to identify markers of T-cell exhaustion that is best associated with ICI treatment efficacy for advanced hepatocellular carcinoma (HCC). Here, we identified a 9-gene signature (LAG3, CD244, CCL5, CXCL9, CXCL13, MSR1, CSF3R, CYBB, and KLRK1) which was functionally associated with CD8 T cell exhaustion. This 9-gene signature had similar predictive values for patients who received single-agent or combination ICI therapy and was not associated with prognosis in HCC patients who received surgery, suggesting that it may outperform other T-cell signatures for...
May, 2021
Chia-Lang Hsu and Shau-Ping Lin
Sophisticated axolotl limb regeneration is a highly orchestrated process that requires highly regulated gene expression and epigenetic modification patterns at precise positions and timings. We previously demonstrated two waves of post-amputation expression of a nerve-mediated repressive epigenetic modulator, histone deacetylase 1 (HDAC1), at the wound healing (3 days post-amputation; 3 dpa) and blastema formation (8 dpa onward) stages in juvenile axolotls. Limb regeneration was profoundly inhibited by local injection of an HDAC inhibitor, MS-275, at the amputation sites. To explore the transcriptional response of post-amputation axolotl limb regeneration in a tissue-specific and time course-dependent manner after MS-275 treatment, we performed transcriptome sequencing of the epidermis...
Jan, 2021
Chun-Hua Hsu
The macro domain is an ADP-ribose (ADPR) binding module, which is considered to act as a sensor to recognize nicotinamide adenine dinucleotide (NAD) metabolites, including poly ADPR (PAR) and other small molecules. The recognition of macro domains with various ligands is important for a variety of biological functions involved in NAD metabolism, including DNA repair, chromatin remodeling, maintenance of genomic stability, and response to viral infection. Nevertheless, how the macro domain binds to moieties with such structural obstacles using a simple cleft remains a puzzle. We systematically investigated the Middle East respiratory syndrome-coronavirus (MERS-CoV) macro domain for its ligand selectivity and binding properties by structural and biophysical approaches. Of interest, NAD,...

頁面